
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



April 1979

,5^p^

ij

r
	 a

--Lockheed ASUSUUARV OF

	

^ocK►0	 JSC-14910.Electron ics
 1113U NASA Read 1, ►/uutilun, Tea• 7701H	 1 a 7 L.

Tel_ 713-333 $411

	

Co1l11.).1r IV, 111C.	 c,f'- 16-o 9

	

Mao„	 ' g bh tmer NASA sponsorship	 Ref: 642-1650
In the ir.;	 Contract NAS 9-15200

ounces Survey

	

m	 f without liability
k; any usu made ti,creot.-

TECHNICAL MEMORANDUM

THE ECOLOGICAL VARIATIONS IN THERMAL INFRARED

EMISSIVITY OF VEGETATION

By

G. K. Arp
D. E. Phinney

(rr7U_I^2^• I	 Tuc Fr0L0f;TC_A!. Vk"`TA"'T(-N!; :N
THERMAL INFFA Q ET) F ►tTSSIVITY OF VRGETATION
(Lockhao l F1Prtconi(-s Co.)	 27 p
HC A n a /MF A^l	 CSCL ?A?

N?Q- 3L4; "5

TTncI a 
G3/u3	 ^n2-rr

Approved By
B. L. Carroll, Manager

EO Development and
Evaluation Department

Distribution
LEC/Technical Library (5)

This document is a revision of i,nd supersedes THE 1.'OLOGICAL. SIGNIFICANCE

OF EMISSIVITY (L.-C-11021 Revision B).



I	 Report No 2	 Goositnment Accession No 3	 Rfc,ptent'I Catalog No
JSC-14910

e	 Title and Suotrtle S	 Report Date

The Ecolo,.cal Variations in Thermal 	 Infrared
April	 1979

¢	 ParfO r,^"i	 Orgamzat'On CrAu
l EC-1339

9	 Per fo , miN Organization Retort No

Emissivity of Ye9etotion

1. Awthor(a)

G.	 K. Arp and 0.	 E.	 Phinney
LEC-i3390

10 Work Unit No

9	 Parfor mmg O r gan, zebon Name a•od Add,w
Lockheed Electronics Company, 	 Inc.

1.	 Contract o• Grant vo
—^

1830 NASA Road 1
Houston. Texas	 77058 NAS 9-15200

13	 Tyre of Report and PN.od C•ovww

12	 Sponsoring Agvxv Name and Addr
National	 Aeronautics and	 pace Administration
Lyndon B. Johnson 5 ace Center 16• Sponsoring Agency rwa^
Houston,	 Texas	 770 8	 ,.
Technical	 Monitor:	 J^ 0.	 Erickson/SF3

16	 Suppramentary Notes

19 Abmarct

Thermal	 emissivity measurements in the 10.5 um to 12.5 um spectral 	 region were taken for
a variety of native common and dominant plants of southern U.S. and Mexico,	 Results of
these measurements are reported with d 	 statistical	 analysis	 that suggests	 there	 is a
significant difference between the emissivity and hence, 	 the	 thermal	 properties of planets
from desert,	 tropical, and	 temperate regions.	 A discussion of	 the significance ana
interpretation of these results	 is presented.

17.	 Key Words (SugOnted by Author(s))	 18	 Distribution Statement
Emissivity
Desert and mesic plants
Radiation

19	 security 0820 (of this report) CNu.f (of thn pawl	 21.	 No. of rages	 2:.	 Prtec'

TUncla

Security

Unclassified	 ssified	 27 iL

'For sale by the National Technical Information'_'ervice, Sp • ingfield, Virginia 22161

JSc Form 1424 IRO Non 751
	 NASA — JSC

i I



x •
x 3

4

ii

CONTENTS

Page
Section I

1-1
1. INTRODUCTION .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	

.	 .	 .	 .	 .

P

1.1	 DEFINITION OF EMISSIVITY	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . 1-1

1.2	 THEORY OF MEASUREMENT OF SURFACE EMISSIVITY
	 .	 .	 .	 .	 .	 . .	 .	 1-4

2-1
2. BACKGROUND	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .

3-1
3. METHODS AND MATERIALS 	 ...	 ...	 .	 .	 .	 .	 .	 •	

.....

`
4-1

4. DISCUSSION	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	
.	 .	 .	 .

4-1
` 4.1	 ANALYSIS	 OF	 DATA	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .

4-1
4.2	 INTERPRETATION OF RESULTS .	 .	

.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .

f' 4-3
4.3	 CONCLUSIONS.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .

5. REFERENCES	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .

t

t,

i

r

a
r

s
4 e'.

s
^

r

{

(1

l
k'

{

1e^



Mme`	 XS FS.•S^S 	S	 IS •°.,	 . Tr • ••,^ _ .,.

TABLES

Table	 Page

	

3-1	 EMISSIVITY VALUES FOR VARIOUS MEXICAN AND SOUTHWESTERN
U.S. PLANTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 	 3-4

r '	 4-1	 MAJOR ECOLOGICAL GROUPS EXAMINED FOR VARIATION IN
EMISSIVITY	 . . . . . . . . . . . . . . . . . . . . . . . . . . .	 4-2

	

4-2	 PRINCIPAL CONTRASTS 	 . . . . . . . . . . . . . . . . . . . . . .	 4-2

4-3 MEANS AND STANDARD DEVIATIONS OF EMISSIVITY FOR THREE
VEGETATIVE GROUPS . . . . . . . . . . . . . . . . . . . . . . . . 	 4-2

FIGURES

Figure	 Page

	

1-1	 Temperature error (°C) associated with an incorrect
assumption of emissivity at 300° K . . . . . . . . . . . . . . . . 1-3

	

1-2	 Simplified longwave radiative balance at the earth's
surface . . . .	 . . . . . . . . . . . . . . . . . . . . . . . . .	 1-5

G

r.
t	

iv
F^

4F



1. INTRODUCTION

The representative thermal emissivity measurements of common and conspicuous

plants of the southwestern U.S. and Mexico were par. of a project sponsored

by the National Aeronautics and Space Administration (NASA) Health Applica-

tions Office from 1973 to 1975.for the screwworm eradication project. These

data, soil data, and ancillary information were used to compute factors for

use in the correction of thermal infrared temperature measurements made by

the National Oceanic and Atmospheric Administration (NOAA) satellites. The

results of this work were used to obtain accurate ground air temperature esti-

mates twice daily oven Mexico and the southwestern U.S. These estimates were

applied to the screwwo rm eradication base and were used in the prediction of

the screwworm fly infestation sites. Refer to Barnes and Forsberg ( ' ) for

details of this project.

A review of the emissivity values of this project suggests that there are

significant differences between values obtained for desert plants and other

ecological species. This significance supports preliminary work by Gates(lo)^

who suggested that in very dry areas, plants might alleviate some of their

potential heat absorption by efficiently emitting energy in the thermal

infrared regions. This feature is especially important in desert regions

where large amounts of heat and light are present but mechanisms for heat

dispersal are limited due to restricted availability of water needed for

cooling in evapotranspiration. To determine the difference in emissivity

values between desert plants and other ecological plants, a series of statis-

tical tests was performed on the collected data. In this report, a discussion

of emissivity including background is presented prior to documenting the pro-

cedures and significant findings of these tests.

1.1 DEFINITION OF EMISSIVITY

The spectral emissivity, e, of a homogeneous surface is defined by Huschke(13)

as the ratio of the radiance of the surface at a specified wavelength and

emitting temperature to the radiance of an ideal blackbody at the same wave-

length and temperature. The values for emissivity may range from zero to

unity.

1-1
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Planck ' s law gives the spectral distribution of the radiance from a perfect

radiator ( blackbody) at temperature T as:

Bx = C l a-S EEXP(C2/XT) - 11 -1	 (1)

where

Cl = 3,75 x 10-16Wm2

C2 = 1.44 x 10-2m°K

,1 = wavelength in meters

!' = rbso;:.te .umperature in degrees Kelvin

The spectral radiance emitted by an opaque gray-body may then be written:

LX (T) = e('X)BX (T)	 (2)

Thus, if the actual emissivity of a surface is not considered, the temperature

calculated from radiometric data will be lower than the true surface temperature.

For naturally occurring surfaces, emissivity values in the thermal infrared

wavelengths have beers reported ranging from 0.82 for granite to near 1.0 for

water, Buettner and Kern (4) . Most surfaces seem to fall within this range.

Generally, rock ranges from 0.86 to 0.93, Buettner and Kern (4) ; soil ranges

from 0.90 to 0.97, varying with type and moisture content, Fuchs and Tanner(8).

Most vegetative surfaces lie between 0.96 and 0.98.

Equations (1) and (2) may be used to evaluate the magnitude of the error

associated with using an incorrect value for emissivity. Figure 1-1 presents

this error for the 10.5um to 12.5Nm spectral band which corresponds to the

spectral sensitivity of the radiometers carried by the NOAA satellites. The

data for this figure was developed for a 300° K surface. Estimated surface

temperatures were calculated by numerically inverting equation (1) to satisfy

the following relationship:

e B
X(T) = BX (T)	 (3)

1-2
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where the true emissivity c and the estimated emissivity a were varied between

0.9 and 1.0. For simplicity, the emissivity was assumed constant over the

spectral region. While this assumption is not strictly valid, particularly

for siliceous minerals, an average emissivity can generally be used without

serious error in the thermal infrared region. 	 ,

♦ As can be seen from Figure 1-1, a 0.01 error in emissivity will result in an

approximately 0.7° C temperature error. The increasingly sophisticated uses

being made of radiometric data can no longer allow errors of several degrees

simply due to lack of adequate information on surface emissivity.

1.2 THEORY OF MEASUREMENT O F SURFACE EMISSIVITY

In this report, the radiation terminology proposed by the World Meteorological

organization (16) is used and all radiances are for the entire infrared spectrum

Consider the longwave radiative balance at the earth's surface which is shown

schematically in Figure 1-2. The outgoing spectral radiance, L?, consists of

two parts. The largest part, esLb , is emitted by the surface; the remainder

is the portion of the incoming longwave radiation, L+, that is reflected by

the surface. Thus, the radiative balance at the surface may be written:

Lt = csLb + rsL+
	

(4)

where rs , the longwave reflectivity, equals 1 - e s . Solving equation (4) for

emissivity yields the following equation:

es _- b L+
L+ - L+
	

(5)

rVI	 . Thus, to calculate the infrared emissivity of a surface L+, L+ and L b must be

measured.

In practice, only a portion of the longwave radiance is measured as determined

by the spectral sensitivity of the radiometer used. Therefore, care is neces-

sary when comparing emissivities measured with instruments of differing spec-

tral sensitivities. An analysis of the sensitivity of the calculated

1-4
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emissivity to measurement errors in the component radiances has been carried

out by Davies at al. (6). It was shown that for typical conditions, the sensi-

tivity of es to errors in L+ was 0.0001 per °K. (The radiance is expressed

in terms of equivalent blackbody temperature.) Equivalent sensitivities for

L b and Lt were -0.026 and -0.028 per °K, respectively. However, under con-

ditions of extremely warm sky, the values for L+ become significant. Thus,

equal care should be taken with all measurements.

9
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2. BACKGROUND

Infrared emissivities have been measured experimentally by a number of

researchers using a variety of field and laboratory instrumentation. Before

the field trip for plant specimens and emissivity measurements was made,

literature on the measurement of infrared emissivities was examined with

attention directed toward techniques, instrumentation, and results.

In 1923, Falckenberg (7) measured emissivities at lOpm using a single beam

spectrophotometer which ranged from 0.89 for sand to 0.955 for snow.

The first evidence of a systematic variation in components of the radiative

heat balance with a change in err,]t;gical communities was reported by Billings

and MorMs (3) . The authors present visible reflectance values for five Great

Basin communities ranging from hot desert to cool moist subalpine forests.

Their data suggest that communities with hotter, dryer conditions have visible

reflectance values higher than values obtained from communities with cooler,

wetter conditions. Their results involve the need for corresponding informa-

tion about components of the infrared energy balance.

Gates and Tantraporn (9) measured the reflectivity of numerous deciduous trees

asrd shrubs using a double-beam Baird spectrophotometer. A systematic varia-

tion in emissivity for some species was noted !-tith the upper surface of the

leaf higher than the lower, the shade leaf more than the sun, and old leaves

more than new. It can be noted in their data that many plants from dry areas

had a relatively higher emissivity. This phenomenon was attributed to the

presence of a layer of waxy cuticle on the leaf surface.

The work of Buettner and Kern (4) represents a milestone in the measurement of

surface emissivities. This and most subsequent work made use of portable

infrared radiometers developed by Barnes Engineering Company of Stamford,

Connecticut. The technique developed by Buettner and Kern is fairly cumber-

some and is more suited to the laboratory than the field. However, the results

2-1
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from their numerous measurements are of high quality and represent a basic

reference for the emissivity of a number of minerals.

Buettner and Kern's approach was to create a controlled environment through

the use of an emissivity "box". A box with highly reflective sides was con-

.	 structed such that the top could alternately be a high reflective surface or

a temperature controlled pseudo-blackbody. When the highly reflective top

was in place, a blackbody cavity (hohlraum) was simulated, and the spectral

radiance emitted by the surface was measured through a hole in the top. The

high emittance top was maintained at a temperature well below ambient. When

the radiance was measured with this top in place, the resultant was the sum

of the surface emittance and the reflected portion of the downwelling radiance

from the top. If the temperature, the emissivity of the high emittance top,

and the radiance of the surface are known when in the hohlraum, the emissivity

were easily calculated.

Buettner and Kern used an IT-2 'infrared radiometer with a spectral sensitivity

from 8 to 1211. A number of their measurements compared favorably with the

integrated readings from a Beckman IR-8 spectrophotometer.

Lorenz (1 '5) studied several surfaces yielding generally good results. However,

his results were somewhat erratic probably due to his method of measuring sky

radiation. Using an IT-1 infrared radiometer (8 to 1411), Lorenz measured the

surface emittance using an aluminum lined box for a hohlraum. He then measured

the combined surface emittance and rtflected sky radiation directly by placing

the surface under an open sky. The sky radiation was then estimated by inte-

grating several direct readings of sky temperature made at different zenith

angles.

Fuchs and Tanner (8) developed their own method of measurement and report experi-

mental data for a few agricultural crops as well as for bare soils. This tech-

nique involves using a reference target of known temperature and emissivity to

estimate downwelling radiation from the sky. Fuchs and Tanner used an IT-2

E	 and an IT-3 radiometer sensitive to the 8 to 1311 spectral band.

2-2
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Fuchs and Tanner (9) presented measurements on sand and illustrated the depen-

dence of emissivity on moisture content. Using a sandy soil, Fuchs and Tanner

observed variations from 0.90 with 0.7 percent water to 0.94 with 8.4 percent

water. At that time they also raised a question as to the relative validity

of measurements made with the techniques of Buettner and Kern. Idso and

Jackson (14) experimentally examined the rival methods and found them to be

equivalent in accuracy with root mean square errors ranging from 0.003 to 0.008.

In contrast with Fuchs and Tanner's work, Hovis (12) reported emissivities of

clay and loam soils close to 0.96 with no apparent variation due to soil

moisture.

Conaway and Van Bavel(5) reported additional measurements on bare soil using

the Buettner and Kern technique. This study examined the use of radiometri-

cally determined surface temperature in calculating evaporation from bare soils.

Davies et a0 6) conducted additional measurements of the emissivity of water
using a Barnes PRT-4 (8 - 1411) infrared radiometer. They report a value of

0.972 with no detectable variation due to turbidity. This compares poorly to

Buettner and Kern's value of 0.993, perhaps due to the differing spectarl

sensitivities of the instruments used in the two studies.

Bartholic et aZ. (2) measured the emissivity of cotton and bare soil in the

course of a study to determine the use of thermal infrared in delineating

moisture stress and soil moisture conditions.

l

In general, all of the workers who have developed the techniques for measuring

•	 emissivity seem to have reported on a fairly random selection of whatever

material was on !sand. As a result, persons working on applications which

require a knowledge of surface emissivities have been forced to take their

own measurements. In addition, with the exception of work by Billings and

Morris 
(3) 

and Gates et aZ.(10 and 11). little effort has been made to study

systematically the'.collective emissivities of species which occur together

in a given eccrogical situation.

ritir`,td
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3. METHODS AND MATERIALS

To gather the desired emissivity data, a series of trips were made to eastern

and northern Mexico, Texas, New Mexico, and Arizona. Field measurements were

made of the important dominant species of each area. The choice of species

•

	

	 included only those that formed the exposed overstory in each community as

only their radiational surfaces would contribute significantly to the scene

emissivity as perceived by the NOAA satellite.

When first entering a study area, the scientist determined the kind and

number of dominant plant communities. The use of botanical literature and

available aerial photographs greatly simplified the problems associated with

determining the distribution of the key Mexican and U.S. communities. After

a general survey, representative communities were selected for detailed

analyses. Quadrats were used to determine plant cover and dominance. At

each site, representative localities were chosen, quadrats 50 m on a side	 L

were marked off, and the vegetation measured and mapped. Based upon a plant's

relative occurrence within a community, the conspicuously dominant, common, 	
g

and occasional plants were listed for each community.

?+	 After an area had been surveyed and the candidates for measurements were

r'	 known, the instruments were set up in a clear area with no overhead trees or

r'

	

	 other radiational obstructions in the immediate area. The measurement site

was away from cars and the accessory instruments to ensure that radiation

from cars, people, and accessory instruments did not affect the field measure-

ments. While the instruments were being assembled and warmed up, specimens,r ;,

`i representing all desired material, were gathered quickly. Time is a critical

factor in all phases of emissivity measurements because temperatures and sky

radiation can fluctuate rapidly within a few minutes and specimens can wilt,

often quickly.

z^

Only leafy branch tips from the exposed upper surfaces of the plant were

^^	 clipped for emissivity measurements. Branches from the lateral but exposed

im portions are best because the leaf orientation with respect to the sun will

3-1
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remain approximately the same when measured by the radiometer. Several

branches 8 to 10 inches long were selected and laid one upon the other with

upper leaf surfaces facing upward and correctly aligned so that the leaf

sample orientation was as nearly normal as possible. Careful attention made

sure that enough layers of leaves were placed together so that none of the

underlying surface showed through. Usually, a dense bundle of leaves 10 inches

in diameter was created. If botanical reference specimens were needed, it

was useful and sometimes critical to collect samples of fruit, flowers, and/or

seeds for use in species identification. These latter portions were not

included in the emissivity sample unless they formed a conspicuous portion of

the canopy. A bundle for each species w_; made and laid in order of collec-

tion number on the ground at the measurement site. For woody species or those

that habitually show dead or bare branches in the canopy, bare twigs were

included in the bundle. For such cases, it was frequently difficult to

create a representative mass of vegetation and branches.

Each specimen was given a collection number and reference name (or botanical

name if known). In the field notebook, the collection number was recorded

with data or local distribution and relative dominance. Once the collection

numbers were assigned, measurements were made, alleviating the potential for

wilting which can be a serious problem in dry or windy areas. Afterwards,

further notes were recorded. Upon completion of the critical measurements,

portions of each specimen sample were placed in the plant press as needed for

later use in specimen identification and verification. If fruits, flowers,

or seeds were previously collected, these were included plus enough vegetative

material to make two herbarium sheets of voucher material.

The field readings were screened on the spot with complete reduction occuring

at a later date in the laboratory. Generally, it is a good practice to evalu-

ate at least a part of the data in the field to eliminate spurious readings.

The calibration curves for the Barnes PRT-5 were used to convert the readings

from the digital voltmeter to temperature. The temperatures were then con-

verted to radiances.

3-2
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The magnitude of the downwelling sky radiation was calculated from the measure-

ments made upon the reference target. 	 Using equation (4) and solving for

L+ yields:

LM - erLb
" Li = -,	 (6)E

. r

Thus, by measuring L directly over the reference's target and measuring Lb

using the emissivity box, L+ can be calculated when the emissivity of the

reference target, e r , is	 known.

The emissivity of the surface (over the spectral range of the radiometer) may

then be calculated.	 After examining equation (5), it is seen that the thermal

infrared emissivity can be calculated directly from L+ and the measurements

of Lb and Li• taken over the unknown. 	 The emissivity values for various

Mexican and southwestern U.S. plants that were measured as part of this study

are presented in Table 3-1.

The equipment used for conducting these measurements consisted of a modified

Barnes PRT-5 with spectral	 sensitivity from 10.5pm to 12,5um and a digital

y voliaaeter for the radiometric measurements, an aluminum lined emissivity box

for measurement of surface radiance, and a brass reference target used to

calculate downwelling sky radiation.	 All	 radiance values used hereafter are

for the 10.5um to 12.51im spectral 	 region.
k'•

I

The measurement sequence for each surface is conducted as follows:
f
4 1.	 Measure Lt of the reference target
b.

2.	 Measure L s of the reference target using the emissivity box

y"
3.	 Measure Li• of the unknown

4.	 Measure L s of the unknown
4

The ideal conditions for measurement are low winds with a cold clear sky.

Often, early morning and late afternoon produce the best results as the changes

3-3
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TABLE 3-1.- EMISSIVITY VALUES FOR VARIOUS MEXICAN AND SOUTHWESTERN U.S. PLANTS

EP'	 s

F ^,

li
,

Habitat/nlche Measurement site Botanical rare	 Carron name
Collection

Bmisslvlty
Nativeeted

Date
repNutlnns

Chaparral

Chaparral Marathon, TX Amain oonatrieta Acacia 4633 0.914 Native 10/.75 3
component Gray

Chaparral Chlatl fountains, Aoaaie neo po ni000a c4scla 4618 ,982 Native IQ/75 2
component TX lealy

Ground covert Laredo, TX Gprnginaaua fa.ily 4283 .991 Native 11174 1
Invader

Introduced Lareeo/Del Rio, [enchma ailiarie Buffelgrass 4286 .976 Cultivated 11/74 2
range grass TX L.

Chaparral Chlatl ]Mountains. Gandolfo uirldte 4619 .963 Native 10/75 3
TX I, M, Johnston

Chaparral Starr County, TX Noliotta parvilozio Barreta 4260 .907 Native 11/74 1
component (Gray) Beath,

Chaparral Starr County, TX Karo(eakia Nu+6aldtiam Coyotlllo 4261 .945 Native 11174 1
corporeal, (R.S.) Zucc.

Chaparral Starr County, TX Lee.hyIlua Nutaaamu Chenizo 4258 ,958 Native 11174 1
covenant (Oar}.)	 I.M. Johnston

Chaparral Laredo, TX Laucephy3/urn 7Putoovons Chenizo 4207 .989 Native 11/74 2
component (Berg.) I.M. Johnstor ,984

Laredo, TX Guayacan 4208 1950 Native 11114 2
Chaparral

ti folia
(E yulm^ Gray

Dominant shrub Laredo, TX f roo pplr glandulova Mesquite 4284 .987 Native 11174 2
Tarr,

Dominant nt tall Lower Valley, TX tIrampia gtandaloau Mesquite SN ,988 Ha.ive 11174 1

Cloud forest

High elevation Mirador near Gaucherie eanife. Encino 4528 .976 0+tive 1175 2
shrub Esperanza, N.B.K.

Puebla

High elevation Mirador near Piero leiaphyiIa Pine 4529 ,958 Native 1/75 2
mosophytic pine Esperanza, Schlecht. and Chem,

Puebla

Temperate Case" tepec, Plutanua li danimm Sycamare 4548 ,966 Native 1/15 3
tree Veracruz Mart, and Gal.

High elevation Mirador near queruua oandimane Encino 4531 .969 Native 1176 3
tree Esperanza, Nee

Puebla

High elevation Mirador near 0ueroua araooifoifa Encino 4530 .973 Native 1175 2
tree Esperanza, Hunt. and Beep .

Puebla

High elevation Mlradar near Goluaun roNagtaaii Nightshade 4532 .956 Native I/15 4
shrub Esperanza, Lag,

Puebla

Desert

Desert shrub Laredo, TX Amoco farnsaiwa Hulsache 4282 .989. Native 11/74 1
(L.) tepid.

Coneon In Hot Springs, TX Agmuo laahoomilla Lochegulila 4606 1997 Native 10/75 3
rosette form Tarr.
deserts

Desert grass- Marathon. TX Agmatin up. 4626 ,961 Native 10175 3
land

Cwmn in Ft. Stockton, TX AlaV.ia gretiaaira White brush 4311 .988 Native 11/74 2
washes (6111.	 A [look.) Tron-

case.
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TABLE 3-1.— Continued.

I	
I I

IWO, I. til I she Meaturerent site Botanical ram, Common nase, Collec
I

Wssivity or Date
Number or
"Plications

Desert

Desert grass Laredo, TX Ar(atids alaum Thre*.aw 4205 0,983 Native 11/74 2
(Nees,) Wale, 1902

Ljoestonq hills Sanderson Canyon. Ariesida, rp. Three-awn 4655 .972 Native 10/75 4
Is

Winter annual ft. Stockton, TX Antralrsluv .'P. Milk.vatch 4323 .993 Native 11/74
understary4 

Kali desert Marathonp TX Atript.r asu'j^au. Four-= 4628 .966 Native 10/7S 3
shrub (Porsh) Dust. salt be,

Des art grass . Marathon, It Oputolowa ^%rqpewtuta SIde-oats gram 4630 .087 Native 10/75 4
lead (Michx.) Tarr.

Desert	 nos Van Horn, TX $out,	 odjr(cqrr!ow Black grama 4327 .090 Native 11/74 2
(To	 ) Tarr.

Desert	 ^ is%. Marathon, It aourr?^^ws 11troura Green, 4627 .969 Native 10176 3
land 1.49. Hairy Grow

Ground ro,ar Ft. Stockton. TX aoragf^oelv jlf^" 42S9 .988 Native 11/74 1

Rosette form Rot Springs. TX pprao4nura.e. fmily 4601 .003 Hative 10/75 2
desert

Desert grass Hot Springs, Is BdhIO0 dn.1 tilotetee Buffalo grass 4604 .97B Native 10175 3
(Nutt.) Enge M,

Creosote hush Plateo TX Chryaoeh^.. ap, Rabbit-br.sh 4610 905 Native 10/75 4
hl 

I 
Is

Rosette form Hot Springs, Is compedia"a 4603 .976 Native 10/75 3
desert

Desert shrub Van Here, TX Cndlfs avinaidas Ilavelina bush 4326 .9B8 Native 11/74 2
(Gray) N.C. Johnson

Roadside weed Chlatl Mountains, C^t.,, rattail Leather weed 4620 955 Native 10/75 3
TX (XI.) Ituall. Arg.

Desert grass Van Horn, TX Ffamauro. p.1ahollum Fluffgrass 4331 .978 Native 111-74 2
(H.S.K.) Tateaka

Desert cactus Tehubcan, Plunbla Eoant.-f. ohintlI7,; Chictilla 4534 .960 Native 1/75 2
(Web.) Rose

Desert shrub Ft, Stockton, TX Flou"noid ou'lua Tarbush 4312 .993 Native 11/74 2
D.C.

Desert shrub Van Harn. TX Flours ... ia nornua Tarbush 4328 .993 Native 11/74 2
D.C.

Creosote bush Plata. Is Plourensia olml,a Tarbush 4609 .993 Native 10/75 3
D.C.

Desert grass Ft. Stockton. TX HII.H. muti" Tolusa 4310 .982 Native 11/74 3
(Duckl.) Beach,

Desert Ft. Stockton, Is J.nlro Anhui Rock cedar 4304 .993 Native 11/74 2
muntain Duch .

Limestone Sanderson Canyon. junj'o... tappd.n' Alligator 46SB .994 Native 10/75 5
desert TX Status. Juniper

art shrub Ft. Stockton, TX Lobplinin spines. AlIthorn 4317 .982 Native 11/74 2
Zucc.

art grass . Marathon, TX cabi.tad 4632 .986 Native 10/75 2
d

art shrub Ft. Stockton,	 is ^r. tridentata Creosote bush 4313 .981 Native 11/74 3
(D. C.) Cov.

art shrub Van Horn, TX ^^-aar trident.for Creosote bush 4325 .981 Native 11/74 3
(D.C.) Coy,

ci
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TABLE 3-1.— Continued.

t
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Habitat/niche Measuroment $l to Botanical nm* Conlon name Ca)lectl4n
number

Delselv4ty
Helve ar
cultivated

eta.
number of
replication

Desert

Desert shrub Hot Wine, TX Larraa trfdentata Creosote bush 4602 01986 Native 10/75 2
(D.C.) Cov.

Desert shrub Plate, TX Correa tridantata Creosote bush 4608 ,995 Native 10/75 3
(D.C.) Coy.

Hot desert Tehuacan Valley, Lamatruworeua aWtotue Organ pipe 4533 .969 Native 1/75 3
cactus Puebla (Pfeiffer) Br. 6 Rose

Hot desert Tehuacan Valley. L-alrooaareua Wheri Carden 4536 .996 Native 1175 2
cactus Pueblo (Gault.) Br. 6 Rose

Limestone hills Sanderson Canyon, Louaophyy ltwe oondidue Chenito 4659 .977 Native 10/75 4
TX I.M. Johnstan

Desert shrub, Ft. Stockton, TX Lyaiw dbrreyl Wolf berry 4316 .991 Native 11/74 2
xerophytic Gray

Limestone hills Sanderson Canyon. Mahonia trifoliate Agarlto 4656 .984 Native 10/75 3
(Mork.) Fedde

Desert grass Ft. Stockton, TX Rwhtanh.rifa Portare Bush muhly 4322 .979 Native 11/74 2
Scribe.

Desert grass Von Morn, TX buhlenurota parlor( Bush muhly 4329 .979 Native 11/74 3
Scribn,

Limestone hills Sanderson, TX Ro7ino .runpeno peer-grass 4654 .979 Native 10/75 5
(To".)

Desert grass- Marathon, TX NOHna ta=a Bunch-grass 4631 .985 Native 10/75 5
land Rats.

Prominent Ft. Stockton, TX Opuntia phaaaeanth. Prickly Pear 4318. ,977 Motive 11/74 3
exposed cactus Engelm.

Desert grass- Wait Mountains, Opuntia phaaaamitha Prickly pear 4516 .953 Native 10/75 3
land TX Engelm.

Creosote hills Plata, TX Opuntia uiolaoaa Purple Prickly 4612 .964 Native 10/75 2
Engelm, pear

Desert Tehuacan Valley, Opuntia .p, Prickly pear 4535 .982 Native 1/75 2
Puebla

Desert shrub Ft. Stockton, TX Proeopfa olmiduloaa Mesquite 4315 ,989 Native 11/74 3
often near Torr.
water courses

Creosote hills Plata, TX Proaopis olmiutaaa Mesquite 4611 .981 Native 10/75 3
Torr.

Desert washes Marathon, IX Proacito oland.losa Mesquite 4E29 1907 Native 10/75 5
Torr.

High desert Canada Morelos„ Cuoeoue c.f. dopraaaipom Encino 4539 .982 Native 1/75 2
shrub Puebla Trel.

Hot, season- Mirador near 8.u- 0uuraua oto4fdao Encino tesmole 4519 .979 Native 1/75 3
ally dry tuico. Veracruz Schlect. 6 Chem,
low hills of
Veracruz

Hot,season- Mlrador near line• qu.rmm podunculurio Encino 4527 .989 Native 1/75 2
ally dry tusco. Veracruz ties
low hills Of
Vera:ruz

Lirestone hills Sanderson Canyon, Rhuo Pima Evergreen sumac 4660 1980 Native 10175 4
TX Gray

Aggressive Marathon, TX Satoa)a Xuli Russiaq-thistle 4634 .995 Introduced 10/75 3
aced L.

Highdesert Canada Morelos, gchi... mono Pirui 4538 1955 Introduced 1/75 2
trae Puebla L.
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TABLE 3-1. — Continued.

Hablut/ntche Measurement site Botanical name Corron name -numbaron Fmissivity cu dvaied Data repllwtlons

Desert

Overt grass Ft. Stockton, TS "ataropo8on Irsuffo4A,a Burro great 4314 01977 Native 11/74 3
Phil.

Desert grass. Numthon, TN Votarfn op. 4625 .900 Native 10175 4
lend

Agressive rortins Veracruz Vida rhombffOU4 4513 .988 Native 1/75 2
Teddy herb L.

Roadside weed Chiati Mountains. 54,17 op. 4617 .985 Native 10/75 3
TX

Roadside weed Chlati Mountains. Varbom oav family 4621 ,971 Native 10/75 3
TX

Agressive Forin, Veracruz VorWefm :arMoonata 4512 .989 Native 1/75 2
weed H.B.K.

Limestone Sanderson Canyon, ywma 7}mapaanfam Yucca 4657 .958 Native 10/75 3
hills TX Tres.

Rosette form Hot Springs, TX Yuan 70rra84 Yucca 4605 ,988 Native 10/75 3
desert Shafer

Pinon-Juniper

Pinon-Juniper Davis Mountains, Junfparua ampwto. Rocky mountain 4673 .991 Native 10175 5
belt TX Sarg. Juniper

Plnon-Juniper Davis Mountains, Pima ooabromea McXlcon Pinon 4674 ,986 Native 10175 0
belt TX Zu11.

Pinon-Juniper Davis Mountains, Pima pondarom Ponderosa pine 4675 ,978 Native 10/75 5
belt TX Laws,

Plmn-Juni per Davis Mountains, wLmmmd arimnfo. Arizona oak 4672 .977 Native 10/75 4
belt TX Sarg.

Pinon-Juniper Davis Mountains, "arm, turbLnoik Scrub oak 4576 .982 Native 1/75 2
belt TX Greene

Mangrove

Coastal Coast of Veracruz [apuroutar{a mauamm Black mangrove 4553 .962 Native 1/75 3
estuaries (L.) Gaotn,	 s,

Coastal Coast of Veracruz Rhtaophora Mangle Red•mengrove 4552 .960 Native 1/75 2
estuaries L.

.Montane rain forest

Secondary Fortin, Veracruz Acacia op. acacia 4506 .952 Native 1/75 3
succession In
disturbed areas

Secondary Fortin, Veracruz coaropfa obdmifaifa Cecrople 4509 ..955 !!ague I/I5 2
'ucc a Won In
disturbed areas.

Coffee cover Mlrador near 7nga op. Ingo 4501 .970 Cultivated 1/75 3
crop Nuatusco,

Veracruz

Coffee cover Mlrador near Pua- Ingo nap. Ingo 4516 ,943 Cultivated 1/75 2
crap tusco. Veracruz

Montane rain Fortin, Veracruz Peram oohfad m 4511 ,901 Native 1175 3
forest tree Nees

Secondary growth Coscomtepec, PI obw oddrota 4547 ,990 Native 1/75 2
shruby herb Veracruz (L.)	 Cass.

Montane Fortin, Veracruz Pothorerphe unbatluta 4510 .943 Native 1/75 2
rain forest (L.) Mfg.
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TABLE 3-1.— Concluded.
if

k

ti	 m

m
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pi

Nabltat/niche Measurement site Botanical "me. Common name Coll eberon Emissivity NolHOled	 ate replications

Temperate forest

Mesophyte Galveston County, ttae sweftarid Taupon 4335 0.981 Native 12174 2
TA Alt. .982 l

Oldfield League City, TX Junfpema Ufrgfnfa" Eastern red 4736 .996 Native 12/74 4
Invador L. cedar

A9ressive Lague City , TX tonfaam Japonfa Japanese 4334 .901 Introduced 12/74 2
understory Thunb. honeysuckle

Wetland Galveston County, Queroue nfow Mater oak 4710 .907 Native 12/74 2
tree TX L. .993 1

Mosophytic Galveston County, 4Lero,n Ufrsrfn(ano Live oak, Upper 4337 .908 Native 12174 3
tree, central TX Mill. areal Live ak,
end coastal TX lower area

Eplphyte Galveston County, W .dafa uanm(dcm SPAnlsh4aass 4377 .905 Native 12174 2

Tropical deciduous forest

Agressive Mirador near I14u• Mroflem fnd(aa Mango 4518 .960 Cultivated 1/75 2
Needy herb taco, Veracruz L.

Fruit tree Playa Carina, Nanptfem f.affea Mango 4557 .960 Cultivated 1/75 2
Veracruz L.

Palmer Pledges Negras. salt maefans Sabal palm 4550 .962 N;dve 1/75 3
Veracruz Mart.

Woodland savanna

Woodland Playa Canino, Arcata op. acacia 4551 .952 Native 1175 2
:Avon" Veracruz

Widespread In Playa Carl", Cofba Pantandm Xapak 4556 .966 Native 1/75 2
woodland Veracruz
savanna

Not, low wood. Playa Carl", 2ubobufa roaas Tabebula 4555 .942 Native 1175 2
land savanna Veracruz (Bert.)	 O.C.

Yy	 3-8
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in temperature produced by shading the surface from the sun are smallest at

these times. A high overcast also produces favorable conditions. Broken or

low warm cloud conditions should be avoided whenever possible. However, rapid

measurements and frequent replications generally produce usable results even

under difficult conditions.
t



4.	 DISCUSSION
E

4.1	 ANALYSIS OF DATA

The variability of the measured emissivity values was examined using analysis

of variance techniques.	 Through a series of contrasts, the statistical sig-

nificance of differences in emissivity between broad ecological groups was

determined.	 The group studied and the number of observations available are

given in Table 4-1.	 The difference between desert vegetation and all other

types was clear.	 The hypothesis stating that the means of each ecological

group were equal was strongly rejected. 	 No significant differences were found

between the two types of desert vegetation or among the four types of non-

desert vegetation.	 However, it was found that the rain forest vegetation was

significantly different from that of the temperate region. 	 These comparisons

may be seen in Table 4-2 along with a comparison of desert, rain forest, and

temperate regions.	 This comparison showed significant differences among the

group means.	 The means and standard deviations of each group may be seen in

Table 4-3.

4.2	 INTERPRETATION OF RESULTS

The results of the statistical analysis suggest the following ecologically

important ideas.

As a means of avoiding excessive and possibly fatal absorption and retention

of heat in the desert, desert plants reemit virtually all incoming radiation.

This aids in keeping plant temperature at a viable. level without benefit of

the common evapotranspiration mechanisms available to more mesic plants.

Temperate region plants face less of a heat stress problem than desert plants,

yet their leaf temperatures must be kept within a range consistent with their

metabblic requirements. In the temperate areas of the U.S. Where these plants

were studied, a moisture stress develops in the late summer when temperatures

are highest but soil moisture levels are low. An adaptive advantage can be

speculated for plants that can increase their heat reduction during warm dry

periods without increasing their evapotranspirational losses.
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TABLE 4-1.— IMJOR ECOLOGICAL GROUPS EXAMINED FOR

VARIATION IN EMISSIVITY

Group ^ Number (.F observations

Dry desert 61

Humid desert 15

Montane rain forest 11

Salt water aquatic 2

Deciduous rain forest 10

Temperate region 11

TABLE 4-2.— PRINCIPAL CONTRASTS OF THE ECOLOGICAL GROUPS

Decrees
of

Contrast F-test freedom Significance

Desert versus all others 21.7 1,108 Highly significant

Dry versus humid desert .4 1,74 Not significant

Montane rain forest ver- 1.7 3,30 Not significant
sus aquatic versus decid-
uous rain forest versus
temperate region

Deciduous rain forest 5.3 1,30 Significant at the
versus temperate region 5-percent level

Desert versus rain forest 16.1 2,105 Significant at the
versus temperate region 1-percent level

TABLE 4-3.— MEANS AND STANDARD DEVIATIONS OF EMISSIVITY

FOR THREE VEGETATIONAL GROUPS

Group Emissivity Standard deviation

Desert 0.981 0.011

Rain forest .962 ..020

Temperate region .977 „012
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In the two tropical groups studied, the montane rain forest and tropical

r deciduous forest, abundant moisture occurs during the growing season. There

is no shortage of moisture needed in cooling. In the cooler dry season, the

deciduous forest is dormant and leafless while the montane rain forest has a

lesser but still sufficie).c,amount of moisture to meet its needs.

G	 ,

4.3 CONCLUSIONS

It appears from this work that there is some physiological adaptation in

plants to their radiational environment. The data and analyses presented

`.	 suggest that on a community-wide level, plants of the desert, tropics, and

temperate regions have each adar.ted to deal with specific and characteristic

radiation levels found in eat; area.

'r

is
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